for more products please visit us on bricksrefractory.com

Wholesale Alumina Bubble Bricks Alumina Hollow Ball Insulating Brick

Basic Information

Place of Origin: Zhengzhou ,ChinaBrand Name: Rongsheng Xinwei

Certification: ISO9001
Model Number: Rongsheng
Minimum Order Quantity: 1 Ton
Price: 200-800USD

Packaging Details: Packed on wooden pallets, with water-proof

cover, and tightened with plastic/steel bandages

Delivery Time: 20-30 Days
Payment Terms: TT; L/C
Supply Ability: 2000tons /month

Product Specification

Highlight: Wholesale Alumina Bubble Bricks,
 Insulating Alumina Bubble Bricks,
 Durable Alumina Bubble Bricks

Product Description

Rongsheng Factory Good Price Wholesale Alumina Bubble Bricks Alumina Hollow Ball Insulating Brick Alumina Insulating Refractory Bricks can serve as a flame-contacting working layer or as an insulating layer. They are widely used in ceramic and refractory kilns, powder metallurgy sintering furnaces, semiconductor firing kilns, and kilns with hydrogen or reducing atmospheres.

Alumina Hollow Ball Bricks also named Alumina bubble brick, is based on the alumina hollow ball and alumina powder as the main raw material. They are mainly used as the lining of high-temperature industrial furnaces operating below 1800°C and as the insulation layer for thermal equipment.

Alumina hollow balls are a new type of high-temperature insulating material. They are made by melting industrial alumina in an electric furnace and blowing it into hollow spheres of a-Al2O3 microcrystals. Products made primarily from alumina hollow balls can be formed into various shapes, with a usage temperature of up to 1800°C. These products have high mechanical strength, several times that of typical lightweight products, while their bulk density is only half that of corundum products. They have been widely used in high-temperature and

ultra-high-temperature furnaces such as petrochemical gasification furnaces, carbon black reactors, and induction furnaces in the metallurgical industry, achieving highly satisfactory energy-saving results.

The production process of alumina hollow ball bricks involves melting alumina raw materials in a tilting electric furnace, where the liquid flows from a pouring spout at a controlled speed. The liquid stream passes through a flat nozzle at an angle of 60°-90° and is blown into hollow balls by a high-velocity airflow at a pressure of 0.6-0.8 MPa. These hollow balls, combined with sintered alumina fine powder and binders in specific proportions, are shaped, dried, and fired to produce alumina hollow ball bricks.

The physical and chemical properties of alumina hollow ball products are as follows:

	Alumina Hollow Ball Bricks	Zirconia Hollow Ball LKZ-98	Sialon-Bonded Al2O3 I	Hollov
Item	LKZ-88		ZKZ-98	
Service				
Temper	1050	1000	2000 2000	
ature	1650	1800	2000 2200	
(°C)				
Al2O3 ,	88	99	-	
%≥	00	99	-	
ZrO2 ,	_		9.8	
%≥	-	-	9.0	
SiO2,	-	0.2	0.2	
% ≤	-	0.2	0.2	
Fe2O3,	0.3	0.15	0.2	
% ≤	0.3	0.15	0.2	
Bulk				
Density	1.30 1.45	1.40 1.65	≤ 3.0	
(g/cm³)				
Cold				
Crushin				
g	10	9	8	
Strength				
(MPa)				
Refracto				
riness				
Under				
Load	1650	1700	1700	
(°C)				
(0.2MPa				
,0.6%)≥				
Perman				
ent				
Linear	.0.0	.00		
Change	±0.3	±0.3	±0.2	
(%) 1600 ×3				
hrs				
Thermal				
Expansi				
on				
Coeffici				The
ent				Res
(10 ⁻⁶ /°C				
)			Th	
	8.0	8.6	Thermal Shock	
			Resistance	

		_					
(1	Roon	n					
te	mpe	mpera					(1100 w
Ш	ture,						(1100 W
~	1300)					
Ti	nerm	al					
C	Conduct			1	0.5		
iv	ity,W	r,W/(K),≤ 0.9					
n	n.K),:						
(A	(Averag e 800)						
e							
l L							<u> </u>
A	p Us	sed as thermal insulation lining for	ι	Jsed as thermal insulation lining of carbon black	It is used for firing hard and su		
p	li 📗	carbon black furnaces in	furnaces in petrochemical industry, thermal insulation vacuum medium frequen				
ca	at pet	trochemical industry, and lining for	linin	g of gasification furnaces and gasification furnaces,	furnace lining and insulation laye		
io	n	high temperature kilns such as	used for lining of other ultra-hig				
s	s ceramics and refractory materials. and refractory materials. furnaces with a ter					th a temp	perature of

Henan Rongsheng Xinwei New Materials Research Institute Co., Ltd

♦ +86-18538509097 ☑ Jackyhan2023@outlook.com ② bricksrefractory.com

11th Floors, Building 6, China Central Electronic Commerce Port, Daxue Road, Zhengzhou, Henan, China