Refractory Sintered Magnesia Chrome Brick For Cement Kilns And Glass Furnaces

Basic Information

Place of Origin: Zhengzhou ,ChinaBrand Name: Rongsheng Xinwei

Certification: ISO9001
Model Number: Rongsheng
Minimum Order Quantity: 1 Ton
Price: 200-800 USD

Packaging Details: Packed on wooden pallets, with water-proof

cover, and tightened with plastic/steel bandages

Delivery Time: 10-20 Days
 Payment Terms: TT; L/C
 Supply Ability: 2000 tons/month

Product Specification

Highlight: Magnesia Chrome Brick,
 Cement kilns Magnesia Chrome Bri

Cement kilns Magnesia Chrome Brick,
Glass Furnaces Magnesia Chrome Brick

More Images

Product Description

Product Description of Rongsheng Refractory Factory High Quality Refractory Sintered Magnesia Chrome Brick For Cement kilns And Glass Furnaces

Sintered magnesia chrome bricks are a type of refractory brick, which are heat-resistant materials used in linings for furnaces, kilns, incinerators and other high-temperature environments.

They are made from sintered magnesia (magnesium oxide, MgO) and chromite (chromium(III)) oxide, Cr2O3) as the main components. Sintering is a process of compacting and forming a material by heating it below its melting point. This process gives the bricks their high strength and resistance to high temperatures

Features And Application of Sintered Magnesia Chrome Brick
Sintered Magnesia chrome bricks are known for their excellent resistance to heat, slag, and abrasion. They are commonly used in a variety of applications, including:

Cement kilns

Glass furnaces
Non-ferrous metal melting furnaces (e.g., copper, nickel, lead)
Electric arc furnaces (EAFs)
Basic oxygen furnaces (BOFs)
Vessel linings in secondary refining processes

Product Specification of Sintered Magnesia Chrome Brick

Today opposition of the state o				
		Physical and Chemical Indicators		
Item	RSMFe-18	RSMFe-16	RSMFe-12	
MgO %	≥45	≥50	≥55	
Cr2O3 %	≥18	≥16	≥12	
SiO2 %	≤1.5	≤1.5	≤1.5	
Apparent Porosity %	≤22	≤22	≤20	
Cold Crush Strength MPa	≥30	≥30	≥30	
0.2Mpa Refractoriness Under Load	≥1550	≥1550	≥1550	

Henan Rongsheng Xinwei New Materials Research Institute Co., Ltd

+86-18538509097

Jackyhan2023@outlook.com bricksrefractory.com

11th Floors, Building 6, China Central Electronic Commerce Port, Daxue Road, Zhengzhou, Henan, China