for more products please visit us on bricksrefractory.com

1400 -1600°C Refractory Anchor Brick Durable High Alumina Brick Lined Furnace

Basic Information

Place of Origin: Zhengzhou ,China
 Brand Name: Rongsheng Xinwei

• Certification: ISO9001

Model Number: LZ-48, LZ-55, LZ-65, LZ-75

Minimum Order Quantity: 1 TonPrice: 200-800USD

• Packaging Details: packed on wooden pallets, with water-proof

cover, and tightened with plastic/steel

bandages

Delivery Time: 20-30DAYS
Payment Terms: TT; L/C
Supply Ability: 2000tons /month

Product Specification

Alumina Content: Above 90%
Application Temperature: Above 1500
Bulk Density: Above 2.2g/cm3

Chemical Stability: Good Color: Red

• Compressive Strength: Above 100MPa

Material: Alumina

• Product Name: High Alumina Refractory Brick

Refractoriness: Above 1750
Service Life: Long
Shape: Rectangle
Size: Standard
Thermal Conductivity: Low
Thermal Shock Resistance: Good

• Highlight: 1600°C Refractory Anchor Brick,

Product Description

Product Description of High Performance1400 -1600 Durable High Alumina Anchor Bricks For Heating Furnace
The Anchor fire brick is a modern non-combustible refractory material composed of refractory aggregate, fine refractory
particles, binders, and additional additives. During construction, blend binders and matrix (aggregates and fines) evenly, and
introduce water (or another liquid) for agitation to create mortar suitable for casting. This product is extensively employed in
heat-treatment furnaces, soaking furnaces, and petrochemical installations as the foundational material for thermal equipment
and industrial furnaces.

Features of High Performance1400 -1600 Durable High Alumina Anchor Bricks For Heating Furnace

- 1.Exceptional Heat Resistance 2.Durable Refractory Composition 3.Versatile Application Capabilities
- 4. Easy Handling and Installation
- 5.Non-Combustible Material
 6.Low Maintenance Requirements
- 7.Broad Industry Applicability 8.Consistent High-Performance
- 9.Environmentally Conscious Manufacturing
- 10.Trusted by Industry Professionals

Applications of High Performance1400 -1600 Durable High Alumina Anchor Bricks:

Transitional zone, reheater of cement rotary kiln and other thermotechnical equipment that requires good thermal shock resistance.

Product Specification of 1400 -1600 Durable High Alumina Anchor Bricks For Heating Furnace

The state of the s				
Items	Index			
	LZ-75	LZ-65	LZ-55	
Al2O3 %,≥	75	65	55	
Cold Crushing Strength, MPa ≥	54	49	44	
Apparent Porosity, % ≤	23	23	22	
Refractoriness Under Load, °C ≥	1520	1500	1470	
Linear Change on Reheating, [1500°C×2h]%	+0.1-0.4	+0.1-0.4	+0.1-0.4	[1500°
Refractoriness, °C ≥	1790	1790	1770	

Henan Rongsheng Xinwei New Materials Research Institute Co., Ltd

+86-18538509097

Jackyhan2023@outlook.com bricksrefractory.com

11th Floors, Building 6, China Central Electronic Commerce Port, Daxue Road, Zhengzhou, Henan, China